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A link between metabolism and longevity was first proposed by Rubner (Rubner, 

1883). From measurements on five different mammals (guinea pigs, cats, dogs, cattle, 

and horses), he observed that long-lived species are bigger and spend less energy per 

gram of tissue mass relative to short-lived species. The assumption of such link was 

rooted from the idea that animals have a limited supply of energy and the quicker they 

utilise it, the sooner they will die. This idea later became a principle of the rate of 

living theory (ROL, (Pearl, 1928). The oxidative stress theory suggested that the 

generation of free radicals is positively correlated with rate of O2 consumption 

(metabolic rate), and that damage caused by these radicals accumulates with age, 

hence causing cell death (Harman, 1956; John R Speakman & Selman, 2011). Many 

studies performed on birds are consistent with this idea (Alonso-Alvarez et al., 2004; 

De Block & Stoks, 2008; Wiersma & Verhulst, 2005). However, the experiments 

performed on mammals demonstrated that the relationship between metabolic rate and 

mitochondrial ROS production is not straightforward (Barja & Herrero, 2000; Judge 

et al., 2005; Sanz et al., 2005; Selman et al., 2008; Venditti, Masullo, & Meo, 1999; 

Wiersma, Selman, Speakman, & Verhulst, 2004). 

Most free radicals are produced in mitochondria during the oxidative 

phosphorylation process. However, production of such radicals was found to be 

driven by the mitochondrial inner membrane potential gradient ((Brand, 2000). The 

higher the metabolic rate is, the lower the inner potential membrane gradient would 

be. A lower membrane potential can also be induced directly by activation of 

uncoupling proteins and other mitochondrial proteins (e.g. adenine nucleotide 

translocate); enabling protons to be transported back to the mitochondrial matrix 



without ATP being produced (John R Speakman & Garratt, 2013). In line with this 

model, previous research on mice, and Glanville fritillary butterflies (Melitaea cinxia) 

revealed that individuals with higher metabolic rates, corrected for body mass, had a 

longer life span due to activation of uncoupling proteins(Niitepõld & Hanski, 2013; 

Wiersma et al., 2004). Similar findings were also reported in mice in which the 

activation of uncoupling proteins by both chemical and genetic approaches, caused 

higher metabolic rates and increased longevity (Caldeira da Silva et al , 2008; Keipert 

et al, 2011).  Many other studies on different species have also shown that life span 

was positively correlated with resting metabolic rate or daily energy metabolism ((Lin 

et al., 2002; Oklejewicz & Daan, 2002; J R Speakman et al., 2003; Wiersma et al., 

2004). However, other studies found no relationship between metabolism and 

longevity measured in voles ((Selman et al., 2008), blowflies Calliphora stygia 

((Hulbert et al, 2004b), Drosophila melanogaster ((Hulbert et al. 2004a). Experiments 

where metabolism was manipulated by a cold exposure have failed to have impacts on 

both oxidative stress and longevity in short tailed field voles (Microtus agrestis) 

(Selman et al., 2008) and on longevity in mice (Vaanholt et al, 2008). Increased 

metabolism through exercise also had no effects on longevity in mice ((Vaanholt, et 

al, 2010). However, some other studies where energy expenditure has been 

manipulated have revealed a negative relationship between energy expenditure and 

life span (Daan, et al, 1996; Lemon & Barth, 1992), consistent with the predictions of 

the ROL theory. It has been demonstrated that most of the previous studies examining 

the link between metabolism and life span across species were performed using 

inappropriate statistical analysis, in which a correction for body size and phylogenetic 

independence effects were not applied (Furness & Speakman, 2008; Speakman, 

2005).  
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